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Abstract

This paper presents a new algorithm to detect moving ob-
Jjects within a scene acquired by a stationary camera. A sim-
ple recursive non linear operator, the 3-A filter, is used to
estimate two orders of temporal statistics for every pixel of
the image. The output data provide a scene characterization
allowing a simple and efficient pixel-level change detection
framework. For a more suitable detection, exploiting spa-
tial correlation in these data is necessary. We use them as
a multiple observation field in a Markov model, leading to
a spatiotemporal regularization of the pixel-level solution.
This method yields a good trade-off in terms of robustness
and accuracy, with a minimal cost in memory and a low
computational complexity.

1. Introduction

To detect the moving objects in an image sequence is a very
important low-level task for many computer vision applica-
tions, such as video surveillance, traffic monitoring, sign
language recognition. When the camera is stationary, a
class of methods usually employed is background subtrac-
tion. The principle of these methods is to build a model of
the static scene (i.e. without moving objects) called back-
ground, and then to compare every frame of the sequence
to this background in order to discriminate the regions of
unusual motion, called foreground (the moving objects).

Many algorithms have been developed for background
subtraction: recent reviews and evaluations can be found
in [8] [2] [3] [12]. In this paper, we are more specifically
interested in outdoor video surveillance systems with long
autonomy. The difficulty in devising background subtrac-
tion algorithms in such context lies in the respect of several
constraints:

o The system must keep working without human inter-
action for a long time, and then take into account grad-
ual or sudden changes such as illumination variation

or new static objects settling in the scene. This means
that the background must be temporally adaptive.

e The system must be able to discard irrelevant motion
such as waving bushes or flowing water. It should also
be robust to slight oscillations of the camera. This
means that there must be a local estimation for the con-
fidence in the background value.

e The system must be real-time, compact and low-
power, so the algorithms must not use much resource,
in terms of computing power and memory.

The two first conditions imply that statistical measures
on the temporal activity must be locally available in every
pixel, and constantly updated. This excludes any basic ap-
proach like using a single model such as the previous frame
or a temporal average for the background, and global thresh-
olding for decision.

Some background estimation methods are based on the
analysis of the histogram of the values taken by each pixel
within a fixed number K of past frames. The mean, the me-
dian or the mode of the histogram can be chosen to set the
background value, and the foreground can be discriminated
by comparing the difference between the current frame and
the background with the histogram variance. More sophis-
ticated techniques are also based on the K past frames his-
tory: linear prediction [14], kernel density estimation [4]
[10], or principal component analysis [11]. These methods
require a great amount of memory, since K needs to be large
(usually more than 50) for robustness purposes. So they are
not compatible with our third condition.

Much more attractive for our requirements are the recur-
sive methods, that do not keep in memory a histogram for
each pixel, but rather a fixed number of estimates computed
recursively. These estimates can be the mean and variance
of a Gaussian distribution [15], or different states of the
background (e.g. its values and temporal derivatives) es-
timated by predictive (e.g. Kalman) filter [5]. But it is dif-
ficult to get robust estimates of the background with linear



recursive framework, unless a multi-modal distribution (e.g.
multiple Gaussian [13]) is explicitly used, which is done at
the price of an increasing complexity and memory require-
ment. Furthermore, these methods rely on parameters such
as the learning rates used in the recursive linear filters, set-
ting the relative weights of the background states and the
new observations, whose tuning can be tricky, which makes
difficult the fulfillment of the first condition stated above.

A recursive approximation of the temporal median was
proposed in [9] to compute the background. The interest of
this method lies in the robustness provided by the non lin-
earity compared to the linear recursive average, and in the
very low computational cost. In this paper, we investigate
some nice properties of this method, introducing the notion
of X-A filtering, and using it to obtain a non-parametric
motion detection. In Section 2, we use the X-A filter to
compute two orders of temporal statistics for each pixel of
the sequence, providing a multiple observation field, and a
pixel-level decision framework. Then, in Section 3, we ex-
ploit the spatial correlation in these data using a Markov
based spatial regularization algorithm. High level process-
ing and feedback are then discussed in Section 4, where
some results are displayed.

2. Temporal processing

Our first background estimate, shown on Table 1(1), is the
same as [9], where I; is the input sequence, and M, the
estimated background value. As noticed in [9], if I} is a dis-
crete random signal, the most probable values of M; lie in
an interval [a, b] such that there are as many indices 7 < ¢
such that I, < a, as indices 7 < ¢ such that I, > b. So
M is an approximation of the median of I;. But this fil-
ter has other interesting properties, relative to the change
detection in time-varying signals. Indeed, we interpret this
background estimation as the simulation of a digital conver-
sion of a time-varying analog signal using ¥-A modulation
(A/D conversion using only comparison and elementary in-
crement/decrement, hence the name X-A filter).

As the precision of the ¥-A modulation is limited to sig-
nals with absolute time-derivative less than unity, the mod-
ulation error is proportional to the variation rate of the sig-
nal, corresponding here to a motion likelihood measure of
the pixels. We then use the absolute difference between I;
and M; as the first observation field: the difference A; (Ta-
ble 1(2)).

Unlike [9], we also use this filter to compute the time-
variance of the pixels, representing their motion activity
measure, used to decide whether the pixel is more likely
“moving” or “stationary”. Then the second observation
field V; (Table 1(3)) used in our method has the dimension
of a temporal standard deviation. It is computed as a X-A
filter of the difference sequence A;. This provides a mea-

sure of temporal activity of the pixels. As we are interested
in pixels whose variation rate is significantly over its tem-
poral activity, we apply the X-A filter to the sequence of N
times the non-zero differences.

Finally, the pixel-level detection is simply performed by
comparing Ay and V; (Table 1(4)).

Initialization
for each pixel z:
Mo(z) = Io()
For each frame t
for each pixel z:
if Mtfl(x) < It(x), Mt(x) = Mtfl(:c) +1
if Mtfl(x) > It(x), Mt(x) Mtfl(:c) -1

€))

For each frame t
for each pixel z:
As(z) = |My(z) — Ii(z)|

(©))

Initialization
for each pixel z:
Vo(z) = Ao(z)
For each frame t
for each pixel  such that A;(x) # 0:
if Vici(z) < N x A¢(z), Vi(z) = Vici(z) + 1
if Vici(z) > N x Ae(z), Vi(z) = Vici(z) — 1

3
For each frame t
for each pixel z:
if Ay(z) < Vi(z)
then Dy(z) =0
else Dy(z) =1
“)

Table 1: The X-A background estimation: (1) Computation
of the ¥-A mean. (2) Computation of the difference be-
tween the image and the ¥-A mean (motion likelihood mea-
sure). (3) Computation of the X-A variance defined as the
¥-A mean of N times the non-zero differences. (4) Com-
putation of the motion label by comparison between the dif-
ference and the variance.

Figures 2 to 4 display an example of the evolution over
time of the different values computed as above, for three
pixels extracted from a country scene similar to the image
shown on Figure 1, for a 1000 frames sequence. The red
solid line represents the input image I;. The blue dashed
line corresponds to the ¥-A mean M;. The green dashed
line represents the difference A;. Finally, the purple dotted
line is the X-A variance V; (using N = 4). The detection
field D; is not represented explicitly, but corresponds to the



Boolean indicator of the condition “the green dashed line is
over the purple dotted one”.

Still area

Motion area

O Clutter area

Figure 1: Example of observed scene, with 3 particular pix-
els from 3 different areas.

The pixel used in Figure 2 is a pixel in a still zone, with
flat temporal activity, such as a remote area of the static
background (in this example, a sky lightly covered with
slowly moving clouds). For such pixels, the high frequency
variation corresponds to temporal noise due to the acquisi-
tion and digitization processes. The low frequency varia-
tions are due to illumination changes or slow motion of low
contrast objects.
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Figure 2: Temporal variation of a pixel value in a still area.

The pixel used in Figure 3 is a pixel in a motion area,
such as tracks or corridors (in this example, a country road
with 4 vehicles passing away). In that case, the moving
objects give rise to sharp changes that are not taken into ac-
count by the ¥-A mean, and then the difference field shows
a peak. Such peaks are discriminated thanks to the compar-
ison with the X-A variance.

The pixel used in Figure 4 is a pixel in a clutter area,
i.e. a zone of physical changes due to intrinsic nature of the
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Figure 3: Temporal variation of a pixel value in a motion
area.

scene rather than moving objects. Examples of such areas
are: trees moving with the wind, river, or crowd in a urban
scene (in our example, high grass in the foreground of the
scene). In that case, the difference field shows a repetition
of peaks, and if these peaks are close enough from each
other with respect to the delay induced by 3-A modulation,
then they will be taken into account in the ¥-A variance,
in such a way that the difference will remain less that the
variance.
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Figure 4: Temporal variation of a pixel value in a clutter
area.

Figure 6 (1)-(4) displays the result of this method for one
frame of an urban traffic sequence. The four images repre-
sent respectively Iy, My, V; and D,. It can be seen that the
discrimination of “moving” pixels corresponds to the detec-
tion of temporally salient pixels with respect to the temporal
activity. This allows to discard irrelevant (clutter) motion,
but also to be less sensitive to sensor oscillations, as it is
shown on Figure 6 (5) and (6): A uniform random oscilla-



tion of 1 pixels has been simulated on the same sequence.
In this case, M, converges to an approximation of the spa-
tiotemporal median, and then V; (Fig. 6(5)) emphasizes the
regions of high contrast, thus increasing the local threshold
in these regions, and avoiding the detection of the whole
scene contour in D, (Fig. 6(6)).

The X-A background estimation provides a simple and
efficient method to detect the significantly changing pixels
in a static scene, with respect to a time constant depending
on the number of gray levels of the images. Nevertheless
it is a pure temporal processing, which can only provide
pixel-level detection. In the following section, we use a
Markovian framework to improve the motion detection by
exploiting the spatial correlation in the data.

3. Spatial regularization

We follow the model that has been used for real-time im-
plementation in different architectures in [1] and in [7].
This Markov model is based on the estimation of a bi-
nary (background/foreground) motion field e given an ob-
servation field o, by maximizing a Bayesian maximum a
posteriori criterion, i.e. given a realization of the obser-
vation field o = y, finding the realization z of the mo-
tion label field e that maximizes the conditional probability
P(e = z/o = y). Under the hypothesis that e is a Markov
field, and a probabilistic model linking o and e, this cor-
responds to finding the motion field e that minimizes the
global energy function defined over the set of pixels S as
follows:

U= [Un(e(s)) + Uale(s), os))),
s€ES
with Uy, (e(s)) = Z Ve(e(s),e(r)),
r€V(s)
and Uy (e(s), o(s)) = 55z [o(s) — T(e(s))]*.

U, (e(s)) is called model energy and is designed to pro-
vide spatiotemporal regularity in the motion field. It is
based on the Markovian modeling of e as a Gibbs field,
where V is the set of neighbors of the pixel s, and the po-
tential functions V(e(s), e(r)) equals —fs, if e(s) = e(r),
and + 08, if e(s) # e(r). The B, are positive constants,
whose values depend on the nature of the neighborhood. We
use a uniform 6-connected spatiotemporal topology with
3 different values S8s = 20 for the 4 spatial neighbors,
Bp = 10 for the past neighbor, and Sr = 30 for the fu-
ture neighbor.

U.(e(s),0(s)) is called fimmess energy and is designed
to ensure a certain level of attachment to the input data,
i.e. the observation o. This term comes from the condi-
tional probability of the observation field o, with respect
to the motion field e, assuming that o(s) = ¥(e(s)) +
n(0,0?), with n(0,0?) a centered Gaussian noise of vari-
ance o2, U(e(s)) = 0if e(s) has the background value, and

U(e(s)) = aif e(s) has the foreground value. [1] and [7]
use the absolute difference between two consecutive frames
as the observation field. They use a constant value for o
(20), and estimate ¢ by computing the spatial variance of
the observation.

The minimization of the global energy U is realized by
the deterministic relaxation called iterated conditional mode
(ICM): all the pixels are sequentially updated, and each
pixel s is given the label e(s) corresponding to the smallest
local energy Uy, (e(s)) + U, (e(s),0(s)). Usually, instead
of a true relaxation, a limited number of scans is performed
(typically 4). This algorithms is known to be very sensitive
to the quality of the initial value of the estimated motion
field. [1] and [7] use a threshold of the observation (i.e. the
absolute difference between two consecutive frames) as the
initial estimation of e.

In our algorithm, we use the same model, with the fol-
lowing exceptions (referring to the variables used in Ta-
ble 1):

o for the observation o, we use A the difference between
the background and the current frame.

e we use the X-A variance V' as a second observation
field, to estimate locally the dispersion factor: ()2
is used instead of o2 for weighting the relative impor-
tance of U, with respect to Uy,.

e the initialization of the Markovian relaxation corre-
sponds to the pixel-level detection D.

What are the advantages of this algorithm compared to
the original Markovian model ?

First, the difference with the 3¥-A background is more
robust than the frame to frame difference, because it com-
bines information over a large period of time instead of two
frames. It is much less sensitive to the aperture problem,
which makes difficult the detection of large homogeneous
zones in motion. It is also less dependent on the velocity of
the objects.

Next, for the same reasons, D is in general much better
to initialize the relaxation than a binarized frame difference,
because it is closer to the expected solution. It must be em-
phasized that, for the ICM algorithm, once the initialization
computed, the other parameters of the model are not crit-
ical, and have shown good behaviors on lots of different
sequences.

Finally, the dispersion parameter is computed locally,
then no global computation is needed at each frame. This
allows the computation of the whole algorithm using only
local memory sharing, thus permitting a massive spatial par-
allelism.

To increase the confidence in the detected objects, a
higher level of processing, is needed, involving regional and



global computation. This is discussed in the following sec-
tion.

4. Region level processing

A precise description of the region level processing is not
in the scope of this paper. We will only present its princi-
ples and discuss the feedback that can be done on the local
computation in order to increase the robustness of the back-
ground estimation.

The output of the Markovian regularization is a low-
level estimation of the foreground, consisting of the tem-
poral salient pixels presenting spatial correlation. In order
to enhance the quality of detection and lower the false alarm
rate, some higher level processing is needed, using regional
and global computations.

The pixels are grouped into regions representing objects.
It is usually done by connected components labeling fol-
lowed by fusion. The resulting objects then undergo mor-
phological filtering, which can reject some objects under
size or shape criteria. Kinematic filtering can also be em-
ployed in order to discriminate the objects whose motion is
consistent with regard to the application (e.g. car, pedes-
trian,...).

In addition to the diminution of the false alarm rate,
the interest of the global level processing is to allow a
frame rate feedback on the low-level detection. One of the
most straightforward example is the adaptation to a sud-
den change of background: if a global confidence index in
the background (e.g. the relative surface area occupied by
the foreground) decreases beneath a certain level, the deci-
sion can be made to re-initialize the background, in order to
lower the re-adaptation time.

Another useful feedback is to attach a confidence index ¢
to each filtered object, from 1 (lowest confidence) to oo (ab-
solute confidence). Those indices are then used as a period
of update for the X-A estimation: if the pixel s belongs to
the foreground with confidence ¢(s), then M;(s) and V;(s)
are updated only every ¢(s) frames. This enhances the qual-
ity of detection by increasing the robustness of the non-
linear filter, and avoiding the objects stopping temporarily
(such as cars at red light) to enter in the background too
quickly (thus generating “ghost” when they move again).

Figures 6(9) and (10) show an application of the rele-
vance feedback, using a uniform confidence index of 6 over
a mask which is simply a morphological filtering of the spa-
tial regularization output.

5. Conclusions

We have presented a new algorithm allowing a robust and
accurate detection of moving objects for a small cost in
memory consumption and computational complexity. We
have emphasized the nice properties of the X-A filter for the

detection of salient features in time-varying signal, showing
that the interest of such filter goes well beyond its temporal
median convergence property.

We have adapted a classical Markovian model to per-
form the spatial regularization that is needed to eliminate
irrelevant salient pixels and aggregate the relevant ones in
significant region. The multiple observation field produced
by the X-A estimation has shown relevant as input of the
Markovian relaxation algorithm.

Because it only relies on pixel-wise or spatially limited
interactions, the whole low-level processing (temporal pro-
cessing and spatial regularization) is suited to a massively
parallel implementation. We are at the present time imple-
menting the algorithm on a programmable artificial retina
[6], which is a fine-grained parallel machine with optical
input. The algorithm is indeed well adapted to the archi-
tecture, which consists in a mesh of tiny processors with
limited memory and computation power. We have already
implemented an alternate version of the algorithm (same
temporal processing followed by a spatiotemporal morpho-
logical filtering) with the following performances, for a
200x200 retina array running at 25 Mhz, using 8 bits per
pixels: 2.25 ms per frame, of which only 0.75 ms for the
sole computation, and the rest for the acquisition.

The present limitation of our approach lies in the adapta-
tion capability to certain complex scenes. It is the case for
very low motion, that is likely to be taken as a background
characteristics. A straightforward way to address this prob-
lem is to downsample the updating rate of the estimates,
i.e. to use only every nth frame to compute M; and every
pth frame to compute V;. See Figure 5 for an example of
result (in this sequence, the scene is always full with per-
sons moving then stopping for a while, and the camera is
slightly oscillating). But this adds two learning rate param-
eters that can be critical, because reducing the updating rate
increases the sensitivity to oscillations and the adaptation
to a new scene. Another limitation case is the wide ampli-
tude periodical motion (e.g sea surge), that will be classified
as foreground if the period is too long. We are investigat-
ing the possibilities to go beyond these limits by combining
different variance models using different sampling periods
in the ¥-A estimation, in order to get a richer quantitative
estimation of the motion activity.

In future works, we will also focus on more sophisticated
high-level filtering, in order to increase the robustness of the
background estimation, and then of the whole detection.
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Figure 6: Result of the proposed algorithm on a traffic se-
quence. (1) I; (2) M;. (3) V; (displayed with normalized
histogram). (4) Dy (N=2). (5) V; with simulated oscilla-
tions of the camera (Normalized histogram). (6) D, for
the oscillating camera (N=2). (7) Detection after Marko-
vian regularization (5 iterations). (8) idem for the oscillating
camera. (9) V; using relevance feedback (applying the same
transformation as image (3). (10) Detection using relevance
feedback on the pixel level processing and Markovian reg-
ularization.



